
+
Sorting…

n  Why sort?
n  To make searching faster!

n  How?

n  Binary Search gives log(n) performance.

n  There are many algorithms for sorting: bubble sort, selection
sort, insertion sort, quick sort, heap sort, …

n  Why so many?
n  First we will learn some of them and perhaps we will be able to

answer this question.
[Hint: While performance has a lot to do with it, it isn’t always
about that!]

+
Using Java Sorting Methods

n  Java has built in methods for sorting
n  All arrays can be sorted as long as:

n  the items in the array have a natural ordering

n  e.g. numeric basic data types

n  any object that implements Comparable

n  or

n  there is a Class that can compare the items as if they had a
natural ordering.

+ Using Java Sorting Methods

+ Using Java Sorting Methods

+ Using Java Sorting Methods

+ Using Java Sorting Methods

+ Declaring a Generic Method

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T> void sort(T[] items, Comparator<? super T> comp)

T represents the
generic parameter for

the sort method

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T> void sort(T[] items, Comparator<? super T> comp)

T should also appear
in the method
parameter list

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T> void sort(T[] items, Comparator<? super T> comp)

The second method parameter
means that comp must be an
object that implements the

Comparator interface for type
T or for a superclass of type T

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T> void sort(T[] items, Comparator<? super T> comp)

For example, you can define
a class that implements

Comparator<Number> and
use it to sort an array of

Integer objects or an array
of Double objects

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T extends Comparable<T>> void sort(List<T> list)

<T extends
Comparable<T>>
means that generic

parameter T must implement
the interface

Comparable<T>

+ Declaring a Generic Method (cont.)

¨  Sample declarations:

public static <T extends Comparable<T>> void sort(List<T> list)

The method parameter
list (the object being

sorted) is of type List<T>

+
Selection sort

n  Basic idea:
n  step forward on each item of the array starting with the first item,

if there is a smaller item in front of the item being stepped on,
then swap the two items. Repeat until you've stepped on every
item.

n  Implementation:
n  nested loop

n  first loop marks the current item

n  inner loop finds the smallest item between the current item
and the last item inclusively, then swaps the items

n  Time Complexity?

+
Bubble sort

n  Basic idea:
n  start with the first item in the array compare adjacent items if they

are not sorted, swap them, go to the next item and repeat until you
get to the end.

n  repeat the above process until sorted

n  Implementation:
n  nested loop

n  first loop checks if the array is sorted

n  inner compares and swaps

n  Time Complexity?

+
Insertion Sort

n  Basic idea:
n  start with a sorted subarray, insert the next item from your

unsorted list into the right position of the sorted list.

n  When you get to the end of the unsorted list, you are done

n  Implementation:
n  nested loop

n  first loop gets next item to insert

n  inner compares, copies and makes space

n  inserts into space

n  Time Complexity?

